A comparison of soft and hard spectral subtraction for speaker verification
نویسندگان
چکیده
An important concern in speaker recognition is the performance degradation that occurs when speaker models trained with speech from one type of channel are subsequently used to score speech from another type of channel, known as channel mismatch. This paper investigates the relative performance of two different spectral subtraction methods for additive noise compensation in the context of speaker verification. The first method, termed “soft” spectral subtraction, is performed in the spectral domain on the |DFT | values of the speech frames while the second method, termed “hard” spectral subtraction, is performed on the Mel-filter energy features. It is shown through both an analytical argument as well as a simulation that soft spectral subtraction results in a higher signal-to-noise ratio in the resulting Mel-filter energy features. In the context of Gaussian mixture model-based speaker verification with additive noise in testing utterances, this is shown to result in an equal error rate improvement over a system without spectral subtraction of approximately 7% in absolute terms, 21% in relative terms, over an additive white Gaussian noise range of 5-25 dB.
منابع مشابه
Using Exciting and Spectral Envelope Information and Matrix Quantization for Improvement of the Speaker Verification Systems
Speaker verification from talking a few words of sentences has many applications. Many methods as DTW, HMM, VQ and MQ can be used for speaker verification. We applied MQ for its precise, reliable and robust performance with computational simplicity. We also used pitch frequency and log gain contour for further improvement of the system performance.
متن کاملUsing Exciting and Spectral Envelope Information and Matrix Quantization for Improvement of the Speaker Verification Systems
Speaker verification from talking a few words of sentences has many applications. Many methods as DTW, HMM, VQ and MQ can be used for speaker verification. We applied MQ for its precise, reliable and robust performance with computational simplicity. We also used pitch frequency and log gain contour for further improvement of the system performance.
متن کاملMissing feature theory with soft spectral subtraction for speaker verification
This paper considers the problem of training/testing mismatch in the context of speaker verification and, in particular, explores the application of missing feature theory in the case of additive white Gaussian noise corruption in testing. Missing feature theory allows for corrupted features to be removed from scoring, the initial step of which is the detection of these features. One method of ...
متن کاملText-Independent Speaker Verification for Real Fast-Varying Noisy Environments
Investigating Speaker Verification in real-world noisy environments, a novel feature extraction process suitable for suppression of time-varying noise is compared with a fine-tuned spectral subtraction method. The proposed feature extraction process is based on approximating the clean speech and the noise spectral magnitude with a mixture of Gaussian probability density functions (pdfs) by usin...
متن کاملSpeaker verification in noisy environments with combined spectral subtraction and missing feature theory
In the framework of Gaussian mixture models (GMMs) [1], we present a new approach towards robust automatic speaker verification (SV) in adverse conditions. This new and simple approach is based on the combination of a speech enhancement using traditional spectral subtraction, and a missing feature compensation to dynamically modify the probability computations performed in GMM recognizers. The ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004